Python画奥运五环_python画奥运五环代码简单_1
对于Python画奥运五环的问题,我有一些经验和见解,同时也了解到一些专业知识。希望我的回答对您有所帮助。
1.python怎么画这个?
2.用python软件画填色的图案,为什么只有海龟路线上有颜色
3.为什么说Python是大数据全栈式开发语言?
4.python 语言怎么画八卦图
5.python turtle我想用五种颜色画五个圆,并且用画圆周的颜色填充,老是出问题,怎么回事,怎么修改?
python怎么画这个?
记住一个中点,然后移动 m 距离画一个圆
然后回中点,旋转角度在进行再移动 m 距离 画一个圆
就这样反复进行
记得旋转的角度必须是能被360整除的数,
角度越小,画就越密集
用python软件画填色的图案,为什么只有海龟路线上有颜色
python沿画笔的方向画线用forward()函数。
forward()函数能使画笔前进,比如沿画笔方向画100像素的直线,代码如下所示:turtle.forward(100)。
为什么说Python是大数据全栈式开发语言?
用python软件画填色的图案,只有海龟路线上有颜色,是设置错误造成的,解决方法如下:1、首先用opencv模块读取数据,得到一个三维矩阵。
2、然后用numpy模块构造一个二维0矩阵,规模和图像的大小一样。
3、接着把的第一个通道的像素值置零,就相当于去掉了的蓝色:a[:,:,0] = c。
4、如果想单独分离出绿色,还需要把第三个通道的像素值置零:a[:,:,0] = ca[:,:,2] = c。
5、单独显示红色:a[:,:,0] = ca[:,:,1] = c。
6、最后不构造零矩阵也是可以的,这样就不用调用numpy模块了。
python 语言怎么画八卦图
就像只要会JavaScript就可以写出完整的Web应用,只要会Python,就可以实现一个完整的大数据处理平台。\x0d\\x0d\云基础设施\x0d\\x0d\这年头,不支持云平台,不支持海量数据,不支持动态伸缩,根本不敢说自己是做大数据的,顶多也就敢跟人说是做商业智能(BI)。\x0d\\x0d\云平台分为私有云和公有云。私有云平台如日中天的 OpenStack\x0d\ \x0d\,就是Python写的。曾经的追赶者CloudStack,在刚推出时大肆强调自己是Java写的,比Python有优势。结果,搬石砸脚,2015年\x0d\初,CloudStack的发起人Citrix宣布加入OpenStack基金会,CloudStack眼看着就要寿终正寝。\x0d\\x0d\如果嫌麻烦不想自己搭建私有云,用公有云,不论是AWS,GCE,Azure,还是阿里云,青云,在都提供了Python SDK,其中GCE只提供Python和JavaScript的SDK,而青云只提供Python SDK。可见各家云平台对Python的重视。\x0d\\x0d\提到基础设施搭建,不得不提Hadoop,在今天,Hadoop因为其MapReduce数据处理速度不够快,已经不再作为大数据处理的首选,但\x0d\是HDFS和Yarn——Hadoop的两个组件——倒是越来越受欢迎。Hadoop的开发语言是Java,没有官方提供Python支持,不过有很多第\x0d\三方库封装了Hadoop的API接口(pydoop,hadoopy等等)。\x0d\\x0d\Hadoop MapReduce的替代者,是号称快上100倍的 Spark ,其开发语言是Scala,但是提供了Scala,Java,Python的开发接口,想要讨好那么多用Python开发的数据科学家,不支持Python,真是说不过去。HDFS的替代品,比如GlusterFS, Ceph 等,都是直接提供Python支持。Yarn的替代者, Mesos 是C++实现,除C++外,提供了Java和Python的支持包。\x0d\\x0d\DevOps\x0d\\x0d\DevOps有个中文名字,叫做 开发自运维 。互联网时代,只有能够快速试验新想法,并在第一时间,安全、可靠的交付业务价值,才能保持竞争力。DevOps推崇的自动化构建/测试/部署,以及系统度量等技术实践,是互联网时代必不可少的。\x0d\\x0d\自动化构建是因应用而易的,如果是Python应用,因为有setuptools, pip, virtualenv, tox, \x0d\flake8等工具的存在,自动化构建非常简单。而且,因为几乎所有Linux系统都内置Python解释器,所以用Python做自动化,不需要系统预\x0d\安装什么软件。\x0d\\x0d\自动化测试方面,基于Python的 Robot Framework 企业级应用最喜欢的自动化测试框架,而且和语言无关。Cucumber也有很多支持者,Python对应的Lettuce可以做到完全一样的事情。 Locust 在自动化性能测试方面也开始受到越来越多的关注。\x0d\\x0d\自动化配置管理工具,老牌的如Chef和Puppet,是Ruby开发,目前仍保持着强劲的势头。不过,新生代 Ansible 和 SaltStack ——均为Python开发——因为较前两者设计更为轻量化,受到越来越多开发这的欢迎,已经开始给前辈们制造了不少的压力。\x0d\\x0d\在系统监控与度量方面,传统的Nagios逐渐没落,新贵如 Sensu 大受好评,云服务形式的New Relic已经成为创业公司的标配,这些都不是直接通过Python实现的,不过Python要接入这些工具,并不困难。\x0d\\x0d\除了上述这些工具,基于Python,提供完整DevOps功能的PaaS平台,如 Cloudify 和 Deis ,虽未成气候,但已经得到大量关注。\x0d\\x0d\网络爬虫\x0d\\x0d\大数据的数据从哪里来?除了部分企业有能力自己产生大量的数据,大部分时候,是需要靠爬虫来抓取互联网数据来做分析。\x0d\\x0d\网络爬虫是Python的传统强势领域,最流行的爬虫框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能够独当一面的类库。\x0d\\x0d\不过,网络爬虫并不仅仅是打开网页,解析HTML这么简单。高效的爬虫要能够支持大量灵活的并发操作,常常要能够同时几千甚至上万个网页同时抓取,传统的\x0d\线程池方式资源浪费比较大,线程数上千之后系统资源基本上就全浪费在线程调度上了。Python由于能够很好的支持协程( Coroutine )操作,基于此发展起来很多并发库,如Gevent,Eventlet,还有Celery之类的分布式任务框架。被认为是比AMQP更高效的ZeroMQ也是最早就提供了Python版本。有了对高并发的支持,网络爬虫才真正可以达到大数据规模。\x0d\\x0d\抓取下来的数据,需要做分词处理,Python在这方面也不逊色,著名的自然语言处理程序包NLTK,还有专门做中文分词的Jieba,都是做分词的利器。\x0d\\x0d\数据处理\x0d\\x0d\万事俱备,只欠东风。这东风,就是数据处理算法。从统计理论,到数据挖掘,机器学习,再到最近几年提出来的深度学习理论,数据科学正处于百花齐放的时代。数据科学家们都用什么编程?\x0d\\x0d\如果是在理论研究领域,R语言也许是最受数据科学家欢迎的,但是R语言的问题也很明显,因为是统计学家们创建了R语言,所以其语法略显怪异。而且\x0d\R语言要想实现大规模分布式系统,还需要很长一段时间的工程之路要走。所以很多公司使用R语言做原型试验,算法确定之后,再翻译成工程语言。\x0d\\x0d\Python也是数据科学家最喜欢的语言之一。和R语言不同,Python本身就是一门工程性语言,数据科学家用Python实现的算法,可以直\x0d\接用在产品中,这对于大数据初创公司节省成本是非常有帮助的。正式因为数据科学家对Python和R的热爱,Spark为了讨好数据科学家,对这两种语言\x0d\提供了非常好的支持。\x0d\\x0d\Python的数据处理相关类库非常多。高性能的科学计算类库NumPy和SciPy,给其他高级算法打了非常好的基础,matploglib让\x0d\Python画图变得像Matlab一样简单。Scikit-learn和Milk实现了很多机器学习算法,基于这两个库实现的 Pylearn2 ,是深度学习领域的重要成员。 Theano 利用GPU加速,实现了高性能数学符号计算和多维矩阵计算。当然,还有 Pandas ,一个在工程领域已经广泛使用的大数据处理类库,其DataFrame的设计借鉴自R语言,后来又启发了Spark项目实现了类似机制。\x0d\\x0d\对了,还有 iPython ,这个工具如此有用,以至于我差点把他当成标准库而忘了介绍。iPython是一个交互式Python运行环境,能够实时看到每一段Python代码的结果。默认情况下,iPython运行在命令行,可以执行 ipython notebook 在网页中运行。用matplotlib绘制的图可以直接嵌入式的显示在iPython Notebook中。\x0d\ \x0d\iPython Notebook的笔记本文件可以共享给其他人,这样其他人就可以在自己的环境中重现你的工作成果;如果对方没有运行环境,还可以直接转换成HTML或者PDF。\x0d\\x0d\为什么是Python\x0d\\x0d\正是因为应用开发工程师、运维工程师、数据科学家都喜欢Python,才使得Python成为大数据系统的全栈式开发语言。\x0d\\x0d\对于开发工程师而言,Python的优雅和简洁无疑是最大的吸引力,在Python交互式环境中,执行 import this\x0d\ \x0d\,读一读Python之禅,你就明白Python为什么如此吸引人。Python社区一直非常有活力,和NodeJS社区软件包爆炸式增长不\x0d\同,Python的软件包增长速度一直比较稳定,同时软件包的质量也相对较高。有很多人诟病Python对于空格的要求过于苛刻,但正是因为这个要求,才\x0d\使得Python在做大型项目时比其他语言有优势。OpenStack项目总共超过200万行代码,证明了这一点。\x0d\\x0d\对于运维工程师而言,Python的最大优势在于,几乎所有Linux发行版都内置了Python解释器。Shell虽然功能强大,但毕竟语法不够优雅,写比较复杂的任务会很痛苦。用Python替代Shell,做一些复杂的任务,对运维人员来说,是一次解放。\x0d\\x0d\对于数据科学家而言,Python简单又不失强大。和C/C++相比,不用做很多的底层工作,可以快速进行模型验证;和Java相比,Python语法简\x0d\洁,表达能力强,同样的工作只需要1/3代码;和Matlab,Octave相比,Python的工程成熟度更高。不止一个编程大牛表达过,Python\x0d\是最适合作为大学计算机科学编程课程使用的语言——MIT的计算机入门课程就是使用的Python——因为Python能够让人学到编程最重要的东西——\x0d\如何解决问题。
python turtle我想用五种颜色画五个圆,并且用画圆周的颜色填充,老是出问题,怎么回事,怎么修改?
from?turtle?import?*
def?yin(radius,?color1,?color2):
width(3)
color("black",?color1)
begin_fill()
circle(radius/2.,?180)
circle(radius,?180)
left(180)
circle(-radius/2.,?180)
end_fill()
left(90)
up()
forward(radius*0.35)
right(90)
down()
color(color1,?color2)
begin_fill()
circle(radius*0.15)
end_fill()
left(90)
up()
backward(radius*0.35)
down()
left(90)
def?main():
reset()
yin(200,?"black",?"white")
yin(200,?"white",?"black")
ht()
return?"Done!"
if?__name__?==?'__main__':
main()
mainloop()
#这是太极图,自行添加八卦符号吧
from?turtle?import?*
colors?=?['red',?'blue',?'green',?'yellow',?'orange',?'purple']
def?circle():
for?i?in?range(36):
forward(20)
left(10)
for?i?in?colors:
color(i)
begin_fill()
circle()
end_fill()
left(60)
好了,今天我们就此结束对“Python画奥运五环”的讲解。希望您已经对这个主题有了更深入的认识和理解。如果您有任何问题或需要进一步的信息,请随时告诉我,我将竭诚为您服务。
- 上一篇:奥运会乒乓球单打几局几胜制_奥运会乒乓球单打几局几胜制啊
- 下一篇:nba选秀结果